Publications/Talks
Publications
* Corresponding authorSubmitted preprints
[S2] H. Ishizaka: Coming soon. [Arxiv] [DOI]
[S1] H. Ishizaka*: On discrete Sobolev inequalities for nonconforming finite elements under a semi-regular mesh condition. (2025) [Arxiv] [DOI]
Publications in peer-reviewed journals
[10] H. Ishizaka*: Nitsche's method under a semi-regular mesh condition. Numerical Algorithms, (2025) [Arxiv] [DOI]
[9] H. Ishizaka*: Anisotropic modified Crouzeix-Raviart finite element method for the stationary Navier-Stokes equation. Numerische Mathematik 157, 855-895 (2025) [Arxiv] [DOI]
[8] H. Ishizaka*: Morley finite element analysis for fourth-order elliptic equations under a semi-regular mesh condition. Applications of Mathematics 69 (6), 769-805 (2024) [Arxiv] [DOI]
[7] H. Ishizaka*: Hybrid weakly over-penalised symmetric interior penalty method on anisotropic meshes. Calcolo 61, 45 (2024) [Arxiv] [DOI]
[6] H. Ishizaka*: Anisotropic weakly over-penalised symmetric interior penalty method for the Stokes equation. Journal of Scientific Computing 100, 53 (2024) [Arxiv] [DOI]
[5] H. Ishizaka*, K. Kobayashi, T. Tsuchiya: Anisotropic interpolation error estimates using a new geometric parameter. Jpn. J. Ind. Appl. Math. 40 (1), 475-512 (2023) [Japan Journal of Industrial and Applied Mathematics] [DOI]
[4] H. Ishizaka*: Anisotropic Raviart-Thomas interpolation error estimates using a new geometric parameter. Calcolo, 59 (4), (2022) [Arxiv] [Calcolo] [DOI]
[3] H. Ishizaka, K. Kobayashi, R. Suzuki, T. Tsuchiya: A new geometric condition equivalent to the maximum angle condition for tetrahedrons. Computers & Mathematics with Applications 99, 323-328 (2021) [Computers & Mathematics with Applications] [DOI]
[2] H. Ishizaka*, K. Kobayashi, T. Tsuchiya: Crouzeix-Raviart and Raviart-Thomas finite-element error analysis on anisotropic meshes violating the maximum-angle condition. Jpn. J. Ind. Appl. Math. 38 (2), 645-675 (2021) [ResearchGate] [DOI]
[1] H. Ishizaka*, K. Kobayashi, T. Tsuchiya: General theory of interpolation error estimates on anisotropic meshes. Jpn. J. Ind. Appl. Math. 38 (1), 163-191 (2021) [ResearchGate] [DOI]
Correction to: General theory of interpolation error estimates on anisotropic meshes. [Link]
Notes
[N2] H. Ishizaka: Interpolation error analysis using a new geometric parameter. [Arxiv]
[N1] H. Ishizaka: Note on a weakly over-penalised symmetric interior penalty method on anisotropic meshes for the Poisson equation, Ver. 1. [Arxiv]
Ongoing Papers, Next Topics
[O6] H. Ishizaka: (temporary title)
[O5] H. Ishizaka: (temporary title)
[O4] H. Ishizaka: (temporary title)
[O3] H. Ishizaka: (temporary title)
[O2] H. Ishizaka: (temporary title)
[O1] H. Ishizaka: (temporary title)
Presentations
[P4] H. Ishizaka and T. Tsuchiya, Error analysis of Crouzeix–Raviart finite element methods on anisotropic meshes, Joint Conference on Applied Mathematics, The Mathematical Society of Japan, 12 December 2019, Ryukoku University, Shiga
[P3] H. Ishizaka and T. Tsuchiya, Error analysis of Crouzeix-Raviart finite element method without the shape regularity condition, The Mathematical Society of Japan, 17 September 2019, Kanazawa University, Ishikawa
[P2] H. Ishizaka and T. Tsuchiya, Error analysis of Crouzeix-Raviart finite element method without the shape regularity condition, The Japan Society for Industrial and Applied Mathematics, 03 September 2019, Tokyo University, Tokyo
[P1] H. Ishizaka and M. Tabata, An finite element analysis of the two-dimensional micro scale heat transport equations, The Japan Society for Industrial and Applied Mathematics, March 2007, Nagoya University, Aichi
Theses
[PhD Thesis] Anisotropic interpolation error analysis using a new geometric parameter and its applications
[Master Thesis] Mathematical analysis of a linearised equation accompanied with a two-phase flow problem
Classification
Crouzeix-Raviart FEMs
Papers: [2][9][10][PhD Thesis]
Presentations: [P2][P3][P4]
Notes: [N2]
Discontinuous Galerkin FEMs, WOPSIP type, Hybrid type
Papers: [6][7]
Presentations:
Notes: [N1]
Morley FEMs
Papers: [8]
Presentations:
Notes: [N2]
Anisotropic Interpolation Error Estimates
Papers: [1][3][4][5][8][9][PhD Thesis]
Presentations: [P2][P3][P4]
Notes: [N2]
Anisotropic FEMs
Papers: [2][6][7][8][9][10][PhD Thesis]
Presentations: [P2][P3][P4]
Notes: [N1]
Pressure robust (well-balanced) schemes
Papers: [8][9][10]
Presentations:
FEMs for the non-Fourier heat transfer equation
Papers:
Presentation: [P1]
Mathematical analysis of two-phase flow problems
Paper: [Master Thesis]
Presentation:
Mathematical analysis of Moving boundary problems
Paper:
Presentation:
Paper: [Master Thesis]
Presentation:
Paper:
Presentation: